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Plasma discharge at ATF




Two regimes of PWFA: Linear and Nonlinear

PWFA regime

Advantage Disadvantage

Linear

Non linear

-Can drive plasma oscillations -Non linear radial focusing
resonantly to reach higher fields and  -Radially dependent acceleration
better transformer ratios using ramped

bunch trains

-Linear ion focusing -Amplitude dependent period
-Acceleration independent of -Large wavebreaking
transverse position -Small window for positron acceleration

Can we exploit advantages of
both?




Quasi nonlinear regime of PWFA
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A measure of nonlinearity 1s the normalized charge:

5= N, k> <<1, linear regime

n, > 1, nonlinear "blowout".
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Using highly focused, low emittance low charge beams, can achieve:
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Experimental proposal

What would be a good experiment to demonstrate this effect?

Goals:

1. Resonantly drive the plasma wakefield response with the use
pulse trains and observe effect in the momentum spectrum

2. Observe guiding of an electron pulse train through the plasma

How:

1. Generate pulse trains of electron beams with spacing on order of
plasma wavelength

2. Satisfy the beam density condition

3. Need plasma source




Beam-plasma interaction experiments at ATF

“Seeding of Self-Modulation Instability of a Long Electron Bunch in a Plasma.”
Fang, Y. et al Phys. Rev. Lett. 112 045001(2014)

“Generation of Trains of Electron Microbunches with Adjustable
Subpicosecond Spacing,” Muggli, p. et al Phys. Rev. Lett. 101 054801 (2008)

“High-gradient plasma-wakefield acceleration with two subpicosecond
electron bunches,” Kallos, E. et al Phys. Rev. Lett. 100 074802 (2008)

“Experimental Study of Current Filamentation Instability,” Allen, B. et al Phys.
Rev. Lett. 109 185007 (2012)

» For all of these experiments, plasma density is greater
than beam density
» To get higher beam densities, need to focus beam better:

o, =100um — o, =5um




ATF capabilities

Energy 60 MeV

Current 100 A

Normalized emittance 1-2 mm-mrad

RMS energy spread <0.1%

RMS transverse beam size <5 microns

Waist beta function 1-2 mm

Pulse train bunch spacing (Az) ~200-500 microns

Plasma density ~10%>-10 cm3

n

For a matched bunch in a pulse train,Az=4, =400um , —=5 and 0=0.1

b
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> Quasi nonlinear experiments at ATF is a go!
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Permanent Magnet quadrupoles

Sx, Sy (microns)
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Focusing properties of PMQ
triplet, optimized with Elegant

Sx, Sy (microns)

Adjustable focal length PMQ triplet:
e Three 1 cm PMQs

e Gradients of ¥270 T/m and 560 T/m
» Effective focal length of “8cm @ 58MeV




Measuring micron scale beams

To measure beams we employ a high resolution OTR imaging system
consisting of a 10 micron Ti foil, Schwarzschild objective, imaging lens

and CCD camera.
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Schwarzschild Optical resolution test of imaging
A system using 1951 USAF target
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Transverse beam measurements from OTR
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Electron beam mask for pulse train generation

Using mask in dispersive section pulse trains of variable spacing can be generated

Picture of the mask (left) and image of
masked beam on phosphor screen
(right)
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Bunch separation measurements are made by autocorrelation of the CTR signal of the pulse
train. Variation of the RF phase (correlated energy spread) allows on to vary bunch separation




OTR downstream of plasma

First tests: Using 300 pC, 3 pS long beam, the beam is imaged 5 mm downstream of
plasma source (30 mm downstream of waist)

No plasma

» At best focus (b) beam size is ~¥30 x 20 microns, ~5 times smaller than with no
plasma (a)

» At high density (c) when k o, > 27 the beam undergoes break up as consequence
of hosing and radial modufation.

» We can study transition from beam breakup to focusing




Plasma density scan with long beam and pulse
train
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Plasma density is scanned from over a range of densities while OTR images are
captured. Each line in (a) and (b) is the integrated lineout of the OTR image in the
horizontal direction. In (a) the unmasked, full length beam is used, in (b) a pulse train
with 310 micron separation is used. Note the shift to higher densities of the “best”
focus occurs (indicated by red arrows).




Comparison to 3D PIC simulations

Plasma wavelength (xm)
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Vorpal (3D PIC code) simulations for a similar beam/plasma parameters show similar
character.




Comparison to 3D PIC simulations
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Vorpal (3D PIC code) simulations for a similar beam/plasma parameters show similar

character.




Energy spectrometer measurements

Spectrometer image showing a three bunch train. Relatively large size
and tilt are due to difficulty in transporting beam to spectrometer after
extreme focusing

56.3 MeV 58.0 MeV




Energy spectrometer measurements
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To investigate a resonant effect, we look at the lowest energy particle after the plasma
interaction. Plotting energy of the last particle versus plasma wavelength, we note a strong
dip right at a wavelength equal to the spacing of the three bunches (380 microns). The overall
energy loss is lower than predicted by simulation by a factor of ~4. Investigations into possible
reasons is underway.




Quasi nonlinear experiments underway at ATF

5 micron beams established

Hints of resonant excitation of wakefields, and plasma focusing
Simple test of transverse modulation instability

TO DO:

* Need better understanding discrepancy between simulation and data as related to
energy shift.
Possible to improve OTR diagnostic using refractive objective, but requires some
minor modifications to plasma source.
Possible design better TMI experiment




Thanks




Installation
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Y Plasma capillary mounted on

Recollimating PMQ 13 mm focal length,
triplet Schwarzschild

Plasma capillary on mount
in retracted position
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Final focus PMQ triplet
i actuator assembly
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Energy spectrometer measurements
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The above shows the results of passing a 3 bunch pulse train through the plasma while
varying the plasma density (b) with a reference with no plasma shown in (a). Each line in (a)
and (b) is a lineout of the spectrometer image. There are hints of resonant behavior in (b) but
the results are slightly different than what is anticipated from simulation. Further data
analysis is underway.




Installation

Need differential pumping to prevent contamination propagating
from plasma to linacs and electron gun. Various small apertures
make tuning the electron beam difficult.

5 mm diameter
pinhole, 1 cm length
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4 mm diameter, 40
cm length tube

60 Liter per second
turbo pump




